
1

 VCC310 Linux Software Programming Guide

 Customized Property

2010.10.18

Our driver is built based on Video 4 Linux 2(V4L2) and Advanced

Linux Sound Architecture(ALSA), video and audio respectively .

Software would be easily implemented if you adopt this

standard APIs. In addition, we could design some customized

properties for the user to control these special functions.

V4L2 resource:

http://linux.bytesex.org/v4l2/

ALSA resource:

http://www.alsa-project.org/alsa-doc/alsa-lib/index.html

http://linux.bytesex.org/v4l2/
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://linux.bytesex.org/v4l2/
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html

2

 Contents

1. Module Dependancy .. 3

2. Module Installation and Uninstallation ... 4

3. Set/Get GPIO Property ... 5

4. Get/Set Decoder Property .. 7

5. Video and Audio Sample Program ... 8

3

1. Module Dependancy

Our module is built based on V4L2(video) and ALSA(audio), so

you have to make sure your kernel have these modules built

in.

Note. If you are using your customized linux kernel, you have

to make Virtual Video Driver built in your kernel, which is

located at Device Drivers -> Multimedia Devices -> Video

capture adapters -> Virtual Video Driver.

4

2. Module Installation and Uninstallation

Our driver module name is LXV4L2D.ko. To reduce the

possibility of failed installation, generally we will compile

our driver in the environment as similar as what the user uses.

Module Installation:

Step1. Copy LXV4L2D.ko to your module directory.

cp LXV4L2D.ko /lib/modules/`uname -r`/

Step2. Add LXV4L2D.ko to modules.dep.

depmod –a

Step3. Load LXV4L2D.ko module.

modprobe LXV4L2D

If “invalid module format” error message occurs, try to use –f

parameter.

modprobe –f LXV4L2D

Module Uninstallation

modprobe –r LXV4L2D

If you still have error message when loading the module, please

provide your .config file to us, which is located in

/usr/src/`uname -r`/.config.

5

3. Set/Get GPIO Property

#define V4L2_CID_GPIO_DIRECTION (V4L2_CID_BASE + 270)

#define V4L2_CID_GPIO_DATA (V4L2_CID_BASE + 271)

The property allows you to access CX25820/1‟s GPIO interface.

The property V4L2_CID_GPIO_DIRECTION allows you to control

its direction. Here, writing 1 to bit enables this pin as output

pin. Usually, the GPIO is controlled by the first chipset in

one board.

Support Value: 0 ~ 1 – Input ~ Output

The property V4L2_CID_GPIO_DATA allows you to access GPIO‟s

data.

Support Value: 0 ~ 1 – Low ~ High

EXAMPLE#01: define GPIO as 16 output pins [0:15] and 16 input

pins [16:31].

struct v4l2_control s_ctrl;

s_ctrl.id = V4L2_CID_GPIO_DIRECTION;

s_ctrl.value = 0x0000FFFF;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

EXAMPLE#02: Define GPIO as 32 output pints [0:31] then pull

high for all.

struct v4l2_control s_ctrl;

s_ctrl.id = V4L2_CID_GPIO_DIRECTION;

s_ctrl.value = 0xFFFFFFFF;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

s_ctrl.id = V4L2_CID_GPIO_DATA;

s_ctrl.value = 0xFFFFFFFF;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

EXAMPLE#03: Define GPIO as 32 input pins [0:31] then read data

from it.

struct v4l2_control s_ctrl;

6

s_ctrl.id = V4L2_CID_GPIO_DIRECTION;

s_ctrl.value = 0x00000000;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

s_ctrl.id = V4L2_CID_GPIO_DATA;

ioctl(fd, VIDIOC_G_CTRL, &s_ctrl);

7

4. Get/Set Decoder Property

You can use VIDIOC_S_CTRL / VIDIOC_G_CTRL to access analog

video decoder property.

Currently, we had offered these properties for VDB300 series

as below:

#define V4L2_CID_BRIGHTNESS (V4L2_CID_BASE + 0)

#define V4L2_CID_CONTRAST (V4L2_CID_BASE + 1)

#define V4L2_CID_SATURATION (V4L2_CID_BASE + 2)

#define V4L2_CID_HUE (V4L2_CID_BASE + 3)

#define V4L2_CID_SHARPNESS (V4L2_CID_BASE + 27)

EXAMPLE#01. Set brightness property of sub-channel#01.

struct v4l2_control s_ctrl;

s_ctrl.id = V4L2_CID_BRIGHTNESS;

s_ctrl.value = 128;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

EXAMPLE#02. Set contrast property of sub-channel#02.

struct v4l2_control s_ctrl;

s_ctrl.id = V4L2_CID_CONTRAST;

s_ctrl.value = 128;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

EXAMPLE#03. Set saturation property of sub-channel #03.

struct v4l2_control s_ctrl;

s_ctrl.id = V4L2_CID_SATURATION;

s_ctrl.value = 128;

ioctl(fd, VIDIOC_S_CTRL, &s_ctrl);

8

5. Video and Audio Sample Program

Video:

Ucview, which is built with v4l/v4l2 interface, is a public

and free video capture software for linux. So you can use ucview

to test our capture card.

In addition, we also provide our own sample program for you

to reference.

Audio:

With our audio driver is built based on ALSA(Advanced Linux

Sound Architecture), you can use “arecord” to record sound

and “aplay” to play the recorded sound.

List your audio device.

arecord -l

Record channel 1 of capture card and play the sound instantly.

arecord -D hw:1,0 -r 48000 -c 1 -f S16_LE | aplay

(Usually hw:0,0 is your sound card device)

Record channel 2 of capture card to file CH2.wav

arecord -D hw:2,0 -r 48000 -c 1 -f S16_LE CH2.wav

You can type „man areocrd‟ or go to here to see more detailed

parameter setting.

In addition, we also provide our own sample program for you

to reference.

http://unicap-imaging.org/
http://gd.tuwien.ac.at/linuxcommand.org/man_pages/arecord1.html

